Source code for satpy.tests.reader_tests.modis_tests.test_modis_l2

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2019 Satpy developers
#
# This file is part of satpy.
#
# satpy is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# satpy is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# satpy.  If not, see <http://www.gnu.org/licenses/>.
"""Unit tests for MODIS L2 HDF reader."""

from __future__ import annotations

import dask
import dask.array as da
import numpy as np
import pytest
# from pytest_lazyfixture import lazy_fixture

from satpy import Scene, available_readers
from satpy.tests.utils import CustomScheduler, make_dataid

from ._modis_fixtures import _shape_for_resolution

# NOTE:
# The following fixtures are not defined in this file, but are used and injected by Pytest:
# - modis_l2_imapp_mask_byte1_file
# - modis_l2_imapp_mask_byte1_geo_files
# - modis_l2_imapp_snowmask_file
# - modis_l2_imapp_snowmask_geo_files
# - modis_l2_nasa_mod06_file
# - modis_l2_nasa_mod35_file
# - modis_l2_nasa_mod35_mod03_files


def _check_shared_metadata(data_arr, expect_area=False):
    assert data_arr.attrs["sensor"] == "modis"
    assert data_arr.attrs["platform_name"] == "EOS-Terra"
    assert "rows_per_scan" in data_arr.attrs
    assert isinstance(data_arr.attrs["rows_per_scan"], int)
    assert data_arr.attrs["reader"] == "modis_l2"
    if expect_area:
        assert data_arr.attrs.get("area") is not None
    else:
        assert "area" not in data_arr.attrs


[docs] class TestModisL2: """Test MODIS L2 reader."""
[docs] def test_available_reader(self): """Test that MODIS L2 reader is available.""" assert "modis_l2" in available_readers()
[docs] def test_scene_available_datasets(self, modis_l2_nasa_mod35_file): """Test that datasets are available.""" scene = Scene(reader="modis_l2", filenames=modis_l2_nasa_mod35_file) available_datasets = scene.all_dataset_names() assert len(available_datasets) > 0 assert "cloud_mask" in available_datasets assert "latitude" in available_datasets assert "longitude" in available_datasets
# @pytest.mark.parametrize( # ("input_files", "has_5km", "has_500", "has_250", "default_res"), # [ # (lazy_fixture("modis_l2_nasa_mod35_file"), # True, False, False, 1000), # ] # ) # def test_load_longitude_latitude(self, input_files, has_5km, has_500, has_250, default_res): # """Test that longitude and latitude datasets are loaded correctly.""" # from .test_modis_l1b import _load_and_check_geolocation # scene = Scene(reader="modis_l2", filenames=input_files) # shape_5km = _shape_for_resolution(5000) # shape_500m = _shape_for_resolution(500) # shape_250m = _shape_for_resolution(250) # default_shape = _shape_for_resolution(default_res) # with dask.config.set(scheduler=CustomScheduler(max_computes=1 + has_5km + has_500 + has_250)): # _load_and_check_geolocation(scene, "*", default_res, default_shape, True, # check_callback=_check_shared_metadata) # _load_and_check_geolocation(scene, 5000, 5000, shape_5km, has_5km, # check_callback=_check_shared_metadata) # _load_and_check_geolocation(scene, 500, 500, shape_500m, has_500, # check_callback=_check_shared_metadata) # _load_and_check_geolocation(scene, 250, 250, shape_250m, has_250, # check_callback=_check_shared_metadata)
[docs] def test_load_quality_assurance(self, modis_l2_nasa_mod35_file): """Test loading quality assurance.""" scene = Scene(reader="modis_l2", filenames=modis_l2_nasa_mod35_file) dataset_name = "quality_assurance" scene.load([dataset_name]) quality_assurance_id = make_dataid(name=dataset_name, resolution=1000) assert quality_assurance_id in scene quality_assurance = scene[quality_assurance_id] assert quality_assurance.shape == _shape_for_resolution(1000) _check_shared_metadata(quality_assurance, expect_area=True)
# @pytest.mark.parametrize( # ("input_files", "loadables", "request_resolution", "exp_resolution", "exp_area"), # [ # (lazy_fixture("modis_l2_nasa_mod35_mod03_files"), # ["cloud_mask"], # 1000, 1000, True), # (lazy_fixture("modis_l2_imapp_mask_byte1_geo_files"), # ["cloud_mask", "land_sea_mask", "snow_ice_mask"], # None, 1000, True), # ] # ) # def test_load_category_dataset(self, input_files, loadables, request_resolution, exp_resolution, exp_area): # """Test loading category products.""" # scene = Scene(reader="modis_l2", filenames=input_files) # kwargs = {"resolution": request_resolution} if request_resolution is not None else {} # scene.load(loadables, **kwargs) # for ds_name in loadables: # cat_id = make_dataid(name=ds_name, resolution=exp_resolution) # assert cat_id in scene # cat_data_arr = scene[cat_id] # assert isinstance(cat_data_arr.data, da.Array) # cat_data_arr = cat_data_arr.compute() # assert cat_data_arr.shape == _shape_for_resolution(exp_resolution) # assert cat_data_arr.values[0, 0] == 0.0 # assert cat_data_arr.attrs.get("resolution") == exp_resolution # # mask variables should be integers # assert np.issubdtype(cat_data_arr.dtype, np.integer) # assert cat_data_arr.attrs.get("_FillValue") is not None # _check_shared_metadata(cat_data_arr, expect_area=exp_area) # @pytest.mark.parametrize( # ("input_files", "exp_area"), # [ # (lazy_fixture("modis_l2_nasa_mod35_file"), False), # (lazy_fixture("modis_l2_nasa_mod35_mod03_files"), True), # ] # ) # def test_load_250m_cloud_mask_dataset(self, input_files, exp_area): # """Test loading 250m cloud mask.""" # scene = Scene(reader="modis_l2", filenames=input_files) # dataset_name = "cloud_mask" # scene.load([dataset_name], resolution=250) # cloud_mask_id = make_dataid(name=dataset_name, resolution=250) # assert cloud_mask_id in scene # cloud_mask = scene[cloud_mask_id] # assert isinstance(cloud_mask.data, da.Array) # cloud_mask = cloud_mask.compute() # assert cloud_mask.shape == _shape_for_resolution(250) # assert cloud_mask.values[0, 0] == 0.0 # # mask variables should be integers # assert np.issubdtype(cloud_mask.dtype, np.integer) # assert cloud_mask.attrs.get("_FillValue") is not None # _check_shared_metadata(cloud_mask, expect_area=exp_area) # @pytest.mark.parametrize( # ("input_files", "loadables", "exp_resolution", "exp_area", "exp_value"), # [ # (lazy_fixture("modis_l2_nasa_mod06_file"), ["surface_pressure"], 5000, True, 4.0), # # snow mask is considered a category product, factor/offset ignored # (lazy_fixture("modis_l2_imapp_snowmask_file"), ["snow_mask"], 1000, False, 1.0), # (lazy_fixture("modis_l2_imapp_snowmask_geo_files"), ["snow_mask"], 1000, True, 1.0), # ] # ) # def test_load_l2_dataset(self, input_files, loadables, exp_resolution, exp_area, exp_value): # """Load and check an L2 variable.""" # scene = Scene(reader="modis_l2", filenames=input_files) # scene.load(loadables) # for ds_name in loadables: # assert ds_name in scene # data_arr = scene[ds_name] # assert isinstance(data_arr.data, da.Array) # data_arr = data_arr.compute() # assert data_arr.values[0, 0] == exp_value # assert data_arr.shape == _shape_for_resolution(exp_resolution) # assert data_arr.attrs.get("resolution") == exp_resolution # _check_shared_metadata(data_arr, expect_area=exp_area)