Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

# Copyright (C) 2013 by the Massachusetts Institute of Technology. 

# All rights reserved. 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions 

# are met: 

# 

# * Redistributions of source code must retain the above copyright 

# notice, this list of conditions and the following disclaimer. 

# 

# * Redistributions in binary form must reproduce the above copyright 

# notice, this list of conditions and the following disclaimer in 

# the documentation and/or other materials provided with the 

# distribution. 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 

# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 

# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 

# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 

# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 

# OF THE POSSIBILITY OF SUCH DAMAGE. 

 

from binascii import unhexlify 

from functools import reduce 

from os import urandom 

# XXX current status: 

# * Done and tested 

# - AES encryption, checksum, string2key, prf 

# - cf2 (needed for FAST) 

# * Still to do: 

# - DES enctypes and cksumtypes 

# - RC4 exported enctype (if we need it for anything) 

# - Unkeyed checksums 

# - Special RC4, raw DES/DES3 operations for GSSAPI 

# * Difficult or low priority: 

# - Camellia not supported by PyCrypto 

# - Cipher state only needed for kcmd suite 

# - Nonstandard enctypes and cksumtypes like des-hmac-sha1 

from struct import pack, unpack 

 

from Cryptodome.Cipher import AES, DES3, ARC4, DES 

from Cryptodome.Hash import HMAC, MD4, MD5, SHA 

from Cryptodome.Protocol.KDF import PBKDF2 

from Cryptodome.Util.number import GCD as gcd 

from six import b, PY3, indexbytes 

 

 

def get_random_bytes(lenBytes): 

# We don't really need super strong randomness here to use PyCrypto.Random 

return urandom(lenBytes) 

 

class Enctype(object): 

DES_CRC = 1 

DES_MD4 = 2 

DES_MD5 = 3 

DES3 = 16 

AES128 = 17 

AES256 = 18 

RC4 = 23 

 

 

class Cksumtype(object): 

CRC32 = 1 

MD4 = 2 

MD4_DES = 3 

MD5 = 7 

MD5_DES = 8 

SHA1 = 9 

SHA1_DES3 = 12 

SHA1_AES128 = 15 

SHA1_AES256 = 16 

HMAC_MD5 = -138 

 

 

class InvalidChecksum(ValueError): 

pass 

 

 

def _zeropad(s, padsize): 

# Return s padded with 0 bytes to a multiple of padsize. 

padlen = (padsize - (len(s) % padsize)) % padsize 

return s + b'\0'*padlen 

 

 

def _xorbytes(b1, b2): 

# xor two strings together and return the resulting string. 

assert len(b1) == len(b2) 

return bytearray((x ^ y) for x, y in zip(b1, b2)) 

 

 

def _mac_equal(mac1, mac2): 

# Constant-time comparison function. (We can't use HMAC.verify 

# since we use truncated macs.) 

assert len(mac1) == len(mac2) 

res = 0 

for x, y in zip(mac1, mac2): 

res |= x ^ y 

return res == 0 

 

 

def _nfold(ba, nbytes): 

# Convert bytearray to a string of length nbytes using the RFC 3961 nfold 

# operation. 

 

# Rotate the bytes in ba to the right by nbits bits. 

def rotate_right(ba, nbits): 

ba = bytearray(ba) 

nbytes, remain = (nbits//8) % len(ba), nbits % 8 

return bytearray((ba[i-nbytes] >> remain) | ((ba[i-nbytes-1] << (8-remain)) & 0xff) for i in range(len(ba))) 

 

# Add equal-length strings together with end-around carry. 

def add_ones_complement(str1, str2): 

n = len(str1) 

v = [a + b for a, b in zip(str1, str2)] 

# Propagate carry bits to the left until there aren't any left. 

while any(x & ~0xff for x in v): 

v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in range(n)] 

return bytearray(x for x in v) 

 

# Concatenate copies of str to produce the least common multiple 

# of len(str) and nbytes, rotating each copy of str to the right 

# by 13 bits times its list position. Decompose the concatenation 

# into slices of length nbytes, and add them together as 

# big-endian ones' complement integers. 

slen = len(ba) 

lcm = nbytes * slen // gcd(nbytes, slen) 

bigstr = bytearray() 

for i in range(lcm//slen): 

bigstr += rotate_right(ba, 13 * i) 

slices = (bigstr[p:p+nbytes] for p in range(0, lcm, nbytes)) 

return bytes(reduce(add_ones_complement, slices)) 

 

 

def _is_weak_des_key(keybytes): 

return keybytes in (b'\x01\x01\x01\x01\x01\x01\x01\x01', 

b'\xFE\xFE\xFE\xFE\xFE\xFE\xFE\xFE', 

b'\x1F\x1F\x1F\x1F\x0E\x0E\x0E\x0E', 

b'\xE0\xE0\xE0\xE0\xF1\xF1\xF1\xF1', 

b'\x01\xFE\x01\xFE\x01\xFE\x01\xFE', 

b'\xFE\x01\xFE\x01\xFE\x01\xFE\x01', 

b'\x1F\xE0\x1F\xE0\x0E\xF1\x0E\xF1', 

b'\xE0\x1F\xE0\x1F\xF1\x0E\xF1\x0E', 

b'\x01\xE0\x01\xE0\x01\xF1\x01\xF1', 

b'\xE0\x01\xE0\x01\xF1\x01\xF1\x01', 

b'\x1F\xFE\x1F\xFE\x0E\xFE\x0E\xFE', 

b'\xFE\x1F\xFE\x1F\xFE\x0E\xFE\x0E', 

b'\x01\x1F\x01\x1F\x01\x0E\x01\x0E', 

b'\x1F\x01\x1F\x01\x0E\x01\x0E\x01', 

b'\xE0\xFE\xE0\xFE\xF1\xFE\xF1\xFE', 

b'\xFE\xE0\xFE\xE0\xFE\xF1\xFE\xF1') 

 

 

class _EnctypeProfile(object): 

# Base class for enctype profiles. Usable enctype classes must define: 

# * enctype: enctype number 

# * keysize: protocol size of key in bytes 

# * seedsize: random_to_key input size in bytes 

# * random_to_key (if the keyspace is not dense) 

# * string_to_key 

# * encrypt 

# * decrypt 

# * prf 

 

@classmethod 

def random_to_key(cls, seed): 

172 ↛ 173line 172 didn't jump to line 173, because the condition on line 172 was never true if len(seed) != cls.seedsize: 

raise ValueError('Wrong seed length') 

return Key(cls.enctype, seed) 

 

 

class _SimplifiedEnctype(_EnctypeProfile): 

# Base class for enctypes using the RFC 3961 simplified profile. 

# Defines the encrypt, decrypt, and prf methods. Subclasses must 

# define: 

# * blocksize: Underlying cipher block size in bytes 

# * padsize: Underlying cipher padding multiple (1 or blocksize) 

# * macsize: Size of integrity MAC in bytes 

# * hashmod: PyCrypto hash module for underlying hash function 

# * basic_encrypt, basic_decrypt: Underlying CBC/CTS cipher 

 

@classmethod 

def derive(cls, key, constant): 

# RFC 3961 only says to n-fold the constant only if it is 

# shorter than the cipher block size. But all Unix 

# implementations n-fold constants if their length is larger 

# than the block size as well, and n-folding when the length 

# is equal to the block size is a no-op. 

plaintext = _nfold(constant, cls.blocksize) 

rndseed = b'' 

while len(rndseed) < cls.seedsize: 

ciphertext = cls.basic_encrypt(key, plaintext) 

rndseed += ciphertext 

plaintext = ciphertext 

return cls.random_to_key(rndseed[0:cls.seedsize]) 

 

@classmethod 

def encrypt(cls, key, keyusage, plaintext, confounder): 

ki = cls.derive(key, pack('>IB', keyusage, 0x55)) 

ke = cls.derive(key, pack('>IB', keyusage, 0xAA)) 

if confounder is None: 

confounder = get_random_bytes(cls.blocksize) 

basic_plaintext = confounder + _zeropad(plaintext, cls.padsize) 

hmac = HMAC.new(ki.contents, basic_plaintext, cls.hashmod).digest() 

return cls.basic_encrypt(ke, basic_plaintext) + hmac[:cls.macsize] 

 

@classmethod 

def decrypt(cls, key, keyusage, ciphertext): 

ki = cls.derive(key, pack('>IB', keyusage, 0x55)) 

ke = cls.derive(key, pack('>IB', keyusage, 0xAA)) 

216 ↛ 217line 216 didn't jump to line 217, because the condition on line 216 was never true if len(ciphertext) < cls.blocksize + cls.macsize: 

raise ValueError('ciphertext too short') 

basic_ctext, mac = bytearray(ciphertext[:-cls.macsize]), bytearray(ciphertext[-cls.macsize:]) 

219 ↛ 220line 219 didn't jump to line 220, because the condition on line 219 was never true if len(basic_ctext) % cls.padsize != 0: 

raise ValueError('ciphertext does not meet padding requirement') 

basic_plaintext = cls.basic_decrypt(ke, bytes(basic_ctext)) 

hmac = bytearray(HMAC.new(ki.contents, basic_plaintext, cls.hashmod).digest()) 

expmac = hmac[:cls.macsize] 

224 ↛ 225line 224 didn't jump to line 225, because the condition on line 224 was never true if not _mac_equal(mac, expmac): 

raise InvalidChecksum('ciphertext integrity failure') 

# Discard the confounder. 

return bytes(basic_plaintext[cls.blocksize:]) 

 

@classmethod 

def prf(cls, key, string): 

# Hash the input. RFC 3961 says to truncate to the padding 

# size, but implementations truncate to the block size. 

hashval = cls.hashmod.new(string).digest() 

truncated = hashval[:-(len(hashval) % cls.blocksize)] 

# Encrypt the hash with a derived key. 

kp = cls.derive(key, b'prf') 

return cls.basic_encrypt(kp, truncated) 

 

class _DESCBC(_SimplifiedEnctype): 

enctype = Enctype.DES_MD5 

keysize = 8 

seedsize = 8 

blocksize = 8 

padsize = 8 

macsize = 16 

hashmod = MD5 

 

@classmethod 

def encrypt(cls, key, keyusage, plaintext, confounder): 

if confounder is None: 

confounder = get_random_bytes(cls.blocksize) 

basic_plaintext = confounder + b'\x00'*cls.macsize + _zeropad(plaintext, cls.padsize) 

checksum = cls.hashmod.new(basic_plaintext).digest() 

basic_plaintext = basic_plaintext[:len(confounder)] + checksum + basic_plaintext[len(confounder)+len(checksum):] 

return cls.basic_encrypt(key, basic_plaintext) 

 

 

@classmethod 

def decrypt(cls, key, keyusage, ciphertext): 

if len(ciphertext) < cls.blocksize + cls.macsize: 

raise ValueError('ciphertext too short') 

 

complex_plaintext = cls.basic_decrypt(key, ciphertext) 

cofounder = complex_plaintext[:cls.padsize] 

mac = complex_plaintext[cls.padsize:cls.padsize+cls.macsize] 

message = complex_plaintext[cls.padsize+cls.macsize:] 

 

expmac = cls.hashmod.new(cofounder+b'\x00'*cls.macsize+message).digest() 

if not _mac_equal(mac, expmac): 

raise InvalidChecksum('ciphertext integrity failure') 

return bytes(message) 

 

@classmethod 

def mit_des_string_to_key(cls,string,salt): 

 

def fixparity(deskey): 

temp = b'' 

for i in range(len(deskey)): 

t = (bin(indexbytes(deskey,i))[2:]).rjust(8,'0') 

if t[:7].count('1') %2 == 0: 

temp+= b(chr(int(t[:7]+'1',2))) 

else: 

temp+= b(chr(int(t[:7]+'0',2))) 

return temp 

 

def addparity(l1): 

temp = list() 

for byte in l1: 

if (bin(byte).count('1') % 2) == 0: 

byte = (byte << 1)|0b00000001 

else: 

byte = (byte << 1)&0b11111110 

temp.append(byte) 

return temp 

 

def XOR(l1,l2): 

temp = list() 

for b1,b2 in zip(l1,l2): 

temp.append((b1^b2)&0b01111111) 

 

return temp 

 

odd = True 

s = string + salt 

tempstring = [0,0,0,0,0,0,0,0] 

s = s + b'\x00'*( 8- (len(s)%8)) #pad(s); /* with nulls to 8 byte boundary */ 

 

for block in [s[i:i+8] for i in range(0, len(s), 8)]: 

temp56 = list() 

#removeMSBits 

for byte in block: 

312 ↛ 315line 312 didn't jump to line 315, because the condition on line 312 was never false if PY3: 

temp56.append(byte&0b01111111) 

else: 

temp56.append(ord(byte)&0b01111111) 

 

#reverse 

if odd is False: 

bintemp = b'' 

for byte in temp56: 

bintemp += b(bin(byte)[2:].rjust(7,'0')) 

bintemp = bintemp[::-1] 

 

temp56 = list() 

for bits7 in [bintemp[i:i+7] for i in range(0, len(bintemp), 7)]: 

temp56.append(int(bits7,2)) 

 

odd = not odd 

 

tempstring = XOR(tempstring,temp56) 

 

tempkey = ''.join(chr(byte) for byte in addparity(tempstring)) 

333 ↛ 334line 333 didn't jump to line 334, because the condition on line 333 was never true if _is_weak_des_key(tempkey): 

tempkey[7] = chr(ord(tempkey[7]) ^ 0xF0) 

 

cipher = DES.new(b(tempkey), DES.MODE_CBC, b(tempkey)) 

chekcsumkey = cipher.encrypt(s)[-8:] 

chekcsumkey = fixparity(chekcsumkey) 

339 ↛ 340line 339 didn't jump to line 340, because the condition on line 339 was never true if _is_weak_des_key(chekcsumkey): 

chekcsumkey[7] = chr(ord(chekcsumkey[7]) ^ 0xF0) 

 

return Key(cls.enctype, chekcsumkey) 

 

@classmethod 

def basic_encrypt(cls, key, plaintext): 

assert len(plaintext) % 8 == 0 

des = DES.new(key.contents, DES.MODE_CBC, b'\0' * 8) 

return des.encrypt(bytes(plaintext)) 

 

@classmethod 

def basic_decrypt(cls, key, ciphertext): 

assert len(ciphertext) % 8 == 0 

des = DES.new(key.contents, DES.MODE_CBC, b'\0' * 8) 

return des.decrypt(bytes(ciphertext)) 

 

@classmethod 

def string_to_key(cls, string, salt, params): 

358 ↛ 359line 358 didn't jump to line 359, because the condition on line 358 was never true if params is not None and params != b'': 

raise ValueError('Invalid DES string-to-key parameters') 

key = cls.mit_des_string_to_key(string, salt) 

return key 

 

 

 

class _DES3CBC(_SimplifiedEnctype): 

enctype = Enctype.DES3 

keysize = 24 

seedsize = 21 

blocksize = 8 

padsize = 8 

macsize = 20 

hashmod = SHA 

 

@classmethod 

def random_to_key(cls, seed): 

# XXX Maybe reframe as _DESEnctype.random_to_key and use that 

# way from DES3 random-to-key when DES is implemented, since 

# MIT does this instead of the RFC 3961 random-to-key. 

def expand(seed): 

def parity(b): 

# Return b with the low-order bit set to yield odd parity. 

b &= ~1 

return b if bin(b & ~1).count('1') % 2 else b | 1 

assert len(seed) == 7 

firstbytes = [parity(b & ~1) for b in seed] 

lastbyte = parity(sum((seed[i]&1) << i+1 for i in range(7))) 

keybytes= bytearray(firstbytes + [lastbyte]) 

388 ↛ 389line 388 didn't jump to line 389, because the condition on line 388 was never true if _is_weak_des_key(keybytes): 

keybytes[7] = keybytes[7] ^ 0xF0 

return bytes(keybytes) 

 

seed = bytearray(seed) 

393 ↛ 394line 393 didn't jump to line 394, because the condition on line 393 was never true if len(seed) != 21: 

raise ValueError('Wrong seed length') 

k1, k2, k3 = expand(seed[:7]), expand(seed[7:14]), expand(seed[14:]) 

return Key(cls.enctype, k1 + k2 + k3) 

 

@classmethod 

def string_to_key(cls, string, salt, params): 

400 ↛ 401line 400 didn't jump to line 401, because the condition on line 400 was never true if params is not None and params != b'': 

raise ValueError('Invalid DES3 string-to-key parameters') 

k = cls.random_to_key(_nfold(string + salt, 21)) 

return cls.derive(k, b'kerberos') 

 

@classmethod 

def basic_encrypt(cls, key, plaintext): 

assert len(plaintext) % 8 == 0 

des3 = DES3.new(key.contents, AES.MODE_CBC, b'\0' * 8) 

return des3.encrypt(bytes(plaintext)) 

 

@classmethod 

def basic_decrypt(cls, key, ciphertext): 

assert len(ciphertext) % 8 == 0 

des3 = DES3.new(key.contents, AES.MODE_CBC, b'\0' * 8) 

return des3.decrypt(bytes(ciphertext)) 

 

 

class _AESEnctype(_SimplifiedEnctype): 

# Base class for aes128-cts and aes256-cts. 

blocksize = 16 

padsize = 1 

macsize = 12 

hashmod = SHA 

 

@classmethod 

def string_to_key(cls, string, salt, params): 

(iterations,) = unpack('>L', params or b'\x00\x00\x10\x00') 

prf = lambda p, s: HMAC.new(p, s, SHA).digest() 

seed = PBKDF2(string, salt, cls.seedsize, iterations, prf) 

tkey = cls.random_to_key(seed) 

return cls.derive(tkey, b'kerberos') 

 

@classmethod 

def basic_encrypt(cls, key, plaintext): 

assert len(plaintext) >= 16 

aes = AES.new(key.contents, AES.MODE_CBC, b'\0' * 16) 

ctext = aes.encrypt(_zeropad(bytes(plaintext), 16)) 

if len(plaintext) > 16: 

# Swap the last two ciphertext blocks and truncate the 

# final block to match the plaintext length. 

lastlen = len(plaintext) % 16 or 16 

ctext = ctext[:-32] + ctext[-16:] + ctext[-32:-16][:lastlen] 

return ctext 

 

@classmethod 

def basic_decrypt(cls, key, ciphertext): 

assert len(ciphertext) >= 16 

aes = AES.new(key.contents, AES.MODE_ECB) 

449 ↛ 450line 449 didn't jump to line 450, because the condition on line 449 was never true if len(ciphertext) == 16: 

return aes.decrypt(ciphertext) 

# Split the ciphertext into blocks. The last block may be partial. 

cblocks = [bytearray(ciphertext[p:p+16]) for p in range(0, len(ciphertext), 16)] 

lastlen = len(cblocks[-1]) 

# CBC-decrypt all but the last two blocks. 

prev_cblock = bytearray(16) 

plaintext = b'' 

for bb in cblocks[:-2]: 

plaintext += _xorbytes(bytearray(aes.decrypt(bytes(bb))), prev_cblock) 

prev_cblock = bb 

# Decrypt the second-to-last cipher block. The left side of 

# the decrypted block will be the final block of plaintext 

# xor'd with the final partial cipher block; the right side 

# will be the omitted bytes of ciphertext from the final 

# block. 

bb = bytearray(aes.decrypt(bytes(cblocks[-2]))) 

lastplaintext =_xorbytes(bb[:lastlen], cblocks[-1]) 

omitted = bb[lastlen:] 

# Decrypt the final cipher block plus the omitted bytes to get 

# the second-to-last plaintext block. 

plaintext += _xorbytes(bytearray(aes.decrypt(bytes(cblocks[-1]) + bytes(omitted))), prev_cblock) 

return plaintext + lastplaintext 

 

 

class _AES128CTS(_AESEnctype): 

enctype = Enctype.AES128 

keysize = 16 

seedsize = 16 

 

 

class _AES256CTS(_AESEnctype): 

enctype = Enctype.AES256 

keysize = 32 

seedsize = 32 

 

 

class _RC4(_EnctypeProfile): 

enctype = Enctype.RC4 

keysize = 16 

seedsize = 16 

 

@staticmethod 

def usage_str(keyusage): 

# Return a four-byte string for an RFC 3961 keyusage, using 

# the RFC 4757 rules. Per the errata, do not map 9 to 8. 

table = {3: 8, 23: 13} 

msusage = table[keyusage] if keyusage in table else keyusage 

return pack('<I', msusage) 

 

@classmethod 

def string_to_key(cls, string, salt, params): 

utf16string = string.encode('UTF-16LE') 

return Key(cls.enctype, MD4.new(utf16string).digest()) 

 

@classmethod 

def encrypt(cls, key, keyusage, plaintext, confounder): 

if confounder is None: 

confounder = get_random_bytes(8) 

ki = HMAC.new(key.contents, cls.usage_str(keyusage), MD5).digest() 

cksum = HMAC.new(ki, confounder + plaintext, MD5).digest() 

ke = HMAC.new(ki, cksum, MD5).digest() 

return cksum + ARC4.new(ke).encrypt(bytes(confounder + plaintext)) 

 

@classmethod 

def decrypt(cls, key, keyusage, ciphertext): 

515 ↛ 516line 515 didn't jump to line 516, because the condition on line 515 was never true if len(ciphertext) < 24: 

raise ValueError('ciphertext too short') 

cksum, basic_ctext = bytearray(ciphertext[:16]), bytearray(ciphertext[16:]) 

ki = HMAC.new(key.contents, cls.usage_str(keyusage), MD5).digest() 

ke = HMAC.new(ki, cksum, MD5).digest() 

basic_plaintext = bytearray(ARC4.new(ke).decrypt(bytes(basic_ctext))) 

exp_cksum = bytearray(HMAC.new(ki, basic_plaintext, MD5).digest()) 

ok = _mac_equal(cksum, exp_cksum) 

523 ↛ 525line 523 didn't jump to line 525, because the condition on line 523 was never true if not ok and keyusage == 9: 

# Try again with usage 8, due to RFC 4757 errata. 

ki = HMAC.new(key.contents, pack('<I', 8), MD5).digest() 

exp_cksum = HMAC.new(ki, basic_plaintext, MD5).digest() 

ok = _mac_equal(cksum, exp_cksum) 

528 ↛ 529line 528 didn't jump to line 529, because the condition on line 528 was never true if not ok: 

raise InvalidChecksum('ciphertext integrity failure') 

# Discard the confounder. 

return bytes(basic_plaintext[8:]) 

 

@classmethod 

def prf(cls, key, string): 

return HMAC.new(key.contents, bytes(string), SHA).digest() 

 

 

class _ChecksumProfile(object): 

# Base class for checksum profiles. Usable checksum classes must 

# define: 

# * checksum 

# * verify (if verification is not just checksum-and-compare) 

@classmethod 

def verify(cls, key, keyusage, text, cksum): 

expected = cls.checksum(key, keyusage, text) 

546 ↛ 547line 546 didn't jump to line 547, because the condition on line 546 was never true if not _mac_equal(bytearray(cksum), bytearray(expected)): 

raise InvalidChecksum('checksum verification failure') 

 

 

class _SimplifiedChecksum(_ChecksumProfile): 

# Base class for checksums using the RFC 3961 simplified profile. 

# Defines the checksum and verify methods. Subclasses must 

# define: 

# * macsize: Size of checksum in bytes 

# * enc: Profile of associated enctype 

 

@classmethod 

def checksum(cls, key, keyusage, text): 

kc = cls.enc.derive(key, pack('>IB', keyusage, 0x99)) 

hmac = HMAC.new(kc.contents, text, cls.enc.hashmod).digest() 

return hmac[:cls.macsize] 

 

@classmethod 

def verify(cls, key, keyusage, text, cksum): 

565 ↛ 566line 565 didn't jump to line 566, because the condition on line 565 was never true if key.enctype != cls.enc.enctype: 

raise ValueError('Wrong key type for checksum') 

super(_SimplifiedChecksum, cls).verify(key, keyusage, text, cksum) 

 

 

class _SHA1AES128(_SimplifiedChecksum): 

macsize = 12 

enc = _AES128CTS 

 

 

class _SHA1AES256(_SimplifiedChecksum): 

macsize = 12 

enc = _AES256CTS 

 

 

class _SHA1DES3(_SimplifiedChecksum): 

macsize = 20 

enc = _DES3CBC 

 

 

class _HMACMD5(_ChecksumProfile): 

@classmethod 

def checksum(cls, key, keyusage, text): 

ksign = HMAC.new(key.contents, b'signaturekey\0', MD5).digest() 

md5hash = MD5.new(_RC4.usage_str(keyusage) + text).digest() 

return HMAC.new(ksign, md5hash, MD5).digest() 

 

@classmethod 

def verify(cls, key, keyusage, text, cksum): 

594 ↛ 595line 594 didn't jump to line 595, because the condition on line 594 was never true if key.enctype != Enctype.RC4: 

raise ValueError('Wrong key type for checksum') 

super(_HMACMD5, cls).verify(key, keyusage, text, cksum) 

 

 

_enctype_table = { 

Enctype.DES_MD5: _DESCBC, 

Enctype.DES3: _DES3CBC, 

Enctype.AES128: _AES128CTS, 

Enctype.AES256: _AES256CTS, 

Enctype.RC4: _RC4 

} 

 

 

_checksum_table = { 

Cksumtype.SHA1_DES3: _SHA1DES3, 

Cksumtype.SHA1_AES128: _SHA1AES128, 

Cksumtype.SHA1_AES256: _SHA1AES256, 

Cksumtype.HMAC_MD5: _HMACMD5, 

0xffffff76: _HMACMD5 

} 

 

 

def _get_enctype_profile(enctype): 

618 ↛ 619line 618 didn't jump to line 619, because the condition on line 618 was never true if enctype not in _enctype_table: 

raise ValueError('Invalid enctype %d' % enctype) 

return _enctype_table[enctype] 

 

 

def _get_checksum_profile(cksumtype): 

624 ↛ 625line 624 didn't jump to line 625, because the condition on line 624 was never true if cksumtype not in _checksum_table: 

raise ValueError('Invalid cksumtype %d' % cksumtype) 

return _checksum_table[cksumtype] 

 

 

class Key(object): 

def __init__(self, enctype, contents): 

e = _get_enctype_profile(enctype) 

632 ↛ 633line 632 didn't jump to line 633, because the condition on line 632 was never true if len(contents) != e.keysize: 

raise ValueError('Wrong key length') 

self.enctype = enctype 

self.contents = contents 

 

 

def random_to_key(enctype, seed): 

e = _get_enctype_profile(enctype) 

if len(seed) != e.seedsize: 

raise ValueError('Wrong crypto seed length') 

return e.random_to_key(seed) 

 

 

def string_to_key(enctype, string, salt, params=None): 

e = _get_enctype_profile(enctype) 

return e.string_to_key(string, salt, params) 

 

 

def encrypt(key, keyusage, plaintext, confounder=None): 

e = _get_enctype_profile(key.enctype) 

return e.encrypt(key, keyusage, bytes(plaintext), bytes(confounder)) 

 

 

def decrypt(key, keyusage, ciphertext): 

# Throw InvalidChecksum on checksum failure. Throw ValueError on 

# invalid key enctype or malformed ciphertext. 

e = _get_enctype_profile(key.enctype) 

return e.decrypt(key, keyusage, ciphertext) 

 

 

def prf(key, string): 

e = _get_enctype_profile(key.enctype) 

return e.prf(key, string) 

 

 

def make_checksum(cksumtype, key, keyusage, text): 

c = _get_checksum_profile(cksumtype) 

return c.checksum(key, keyusage, text) 

 

 

def verify_checksum(cksumtype, key, keyusage, text, cksum): 

# Throw InvalidChecksum exception on checksum failure. Throw 

# ValueError on invalid cksumtype, invalid key enctype, or 

# malformed checksum. 

c = _get_checksum_profile(cksumtype) 

c.verify(key, keyusage, text, cksum) 

 

 

def cf2(enctype, key1, key2, pepper1, pepper2): 

# Combine two keys and two pepper strings to produce a result key 

# of type enctype, using the RFC 6113 KRB-FX-CF2 function. 

def prfplus(key, pepper, l): 

# Produce l bytes of output using the RFC 6113 PRF+ function. 

out = b'' 

count = 1 

while len(out) < l: 

out += prf(key, b(chr(count)) + pepper) 

count += 1 

return out[:l] 

 

e = _get_enctype_profile(enctype) 

return e.random_to_key(_xorbytes(bytearray(prfplus(key1, pepper1, e.seedsize)), 

bytearray(prfplus(key2, pepper2, e.seedsize))))